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The role of large vortex structures in the evolution of a two-dimensional shear layer is 
studied numerically. The motion of up to 4096 vortices is followed on a 256 x 256 grid 
using the cloud-in-cell algorithm. The scaling predictions of self-preservation theory 
are confirmed for low-order velocity correlations, although the existence of vortex 
structures produces large fluctuations even in a simulation of this size. The simple 
picture of the shear layer as a line of vortex blobs, that merge painvise thus thickening 
the layer, is not seen. On the contrary, the layer seems to thicken by the scattering of 
vortex structures of roughly fixed size about the midline. The size of the vortex 
structures does not scale with the layer thickness. A study of the entrainment of a 
passive marker shows that flow visualization experiments may have overestimated the 
size of the vortex structures. It appears that the finite area vortices have time to 
equilibrate between mergings, and the consequences of applying equilibrium statisti- 
cal mechanics to their internal structure are explored. A simple model is presented 
which demonstrates how the size and separation of vortex structures may lock into a 
fixed ratio. This is precisely the type of mechanism that is needed to produce simple 
scaling in a flow that has initially several distinct length scales. Anumber of consistency 
checks on the numerical results are performed. In  particular, the evolution of the same 
vortex configuration on two grids of different size is compared. This test showed that, 
although errors on subgrid scales do propagate to small wavenumbers, the dominant 
wavenumber of vorticity cascades back ahead of the peak in the error spectrum. 

1. Introduction 
Recent experiments on the plane turbulent mixing layer (Winant & Browand 

1974; Brown & Roshko 1974) have substantially changed our picture of this simple 
free turbulent flow. The experiments show, contrary to most expectations, that the 
mixing layer is dominated by large, spanwise coherent vortex structures. They 
suggest that  the downstream thickening of the turbulent mixing layer arises through 
sequential amalgamation of these vortices to form ever larger vortices. Winant & 
Browand (1974) referred to this process as vortex pairing, and Brown & Roshko (1974) 
actually produced a plot of vortex positions versus time, which shows the whole 
genealogy of the vortex structures, with vortices of one generation merging to form 
the larger vortices of the next generation. The reader is referred to Roshko (1976) for a 
review. A considerable amount of information on structures in turbulent flows is 
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contained in the Proceedings of the 1977 Berlin Symposium on Structure and Mech- 
anisms of Turbulence (Fiedler 1978). 

While all experiments that we are aware of support the existence of coherent 
structures in two-dimensional mixing layers, i.e. those in which the instantaneous 
large-scale velocity field is identically zero in the spanwise direction, turbulence in the 
absence of large-scale rotation or stratification generally appears to become three 
dimensional. When the two initial streams are not kept two-dimensional prior to 
merging the existence of structures downstream is more controversial. We refer the 
reader to the remarks made by Batt (1 977) and the experiments of Chandrsuda et al. 
(1978). The recent investigation of Wygnanski et al. (1979) discusses the emergence and 
persistence of the two-dimensional structure in the mixing layer. These authors 
observe coherent structures as previously described under a variety of initial con- 
ditions, including fully turbulent boundary layers on the splitter plate and enhanced 
free-stream turbulence (see also Browand and Troutt 1980). 

We shall consistently refer to the common laboratory case of the flow downstream 
from a splitter plate as the mixilig layer. This flow is statistically stationary but 
it evolves downstream. A flow that starts as a tangential discontinuity of velocity 
across an infinite plane we shall designate a (unsteady) shear layer. This flow has 
statistical homogeneity along the layer. Traditional theories of these free turbulent 
flows based on Reynolds equations start from the notion of self-preservation (Monin 
& Yaglom 1971; Tennekes & Lumley 1972). To be specific, consider the unsteady 
shear layer with a velocity jump AU across the layer and a thickness O ( t )  (for an exact 
definition see (3.3)) at very large Reynolds number. The velocity far above the layer 
is - &AU, and far below is 3AU. Self-preservation theory asserts that if all velocities 
are sealed by A U ,  and all lengths perpendicular to the shear layer are scaled by 6'(t), 
then the scaled flow is statistically stationary. For example, if y is the co-ordinate 
transverse to the shear layer and u is the velocity along the shear layer, the ensemble 
average, (u), of u depends only on y and time t ,  by statistical homogeneity along the 
layer, and is assumed to satisfy the scaling law 

where f is some universal function in principle calculable from the equations of motion. 
In  this same theory 0 grows proportionally to AVt. Our applications of self-preser- 
vation theory will be limited to the largest scales of the flow and to high values of 
Reynolds number. 

Although they are often discussed together in the literature, the unsteady shear 
layer and the mixing layer are not rigorously eqnivalent in the sense that it is not 
possible to go from one to the other by a Galilean transformation. The difference is 
apparent when one applies self-preservation theory to the mixing layer. Let U, and U, 
be the free stream velocities on the two sides of a splitter plate, so that A U = U, - U,. 
The dimensionless ratio A = ( U, - U,)/ ( Ul + U,) should in principle be included when 
writing down scaling laws. Self-preservation applied to the mixing layer will always 
give 6' proportional to x, where 6' is the layer thickness at  station x downstream of the 
splitter plate, but the constant of proportionality depends on A (cf. Brown & Roshko 
1974; Browand & Latigo 1979). For the shear layer, the constant of proportionality 
between 0(t)  and AUt, called r in (3.7) below, cannot depend on A since the statistics 
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of this flow are invariant under a Galilean transformation along the layer while A is 
not. Similarly, in the generalized version of (1 .1  ), 

(u> - WA + u,) = AUf(Y/@, (1.2) 

the ‘ universal ’ function f may depend on A for the mixing layer but not for the shear 
layer. Experimentally most if not all of the A dependence off comes from the coef- 
ficient in the formula for the growth of 8 with x (Browand & Latigo 1979). Thus, while 
there is just one self-preserving shear layer, the mixing layer really consists of a one- 
parameter family of flows. In  this paper we study the two-dimensional shear layer. On 
physical grounds, we expect the shear layer and a given mixing layer to be similar 
since spreading angles are empirically small (cf. the discussion following (3.7) and the 
small value of r ) .  Thus, at  a point far downstream of the splitter plate the boundaries 
of the turbulent region in a mixing layer appear nearly parallel. 

The discovery of vortex structures in the turbulent mixing layer raises serious 
doubts about the validity of self-preservation arguments. The idea that a mixing layer 
can be characterized statistically by just one length scale, although obviously approxi- 
mate, is certainly much more plausible if the vorticity is spread out randomly within 
some wedge emanating from the trailing edge of the splitter plate. In a flow dominated 
by vortex roll structures the implication is that self-preservation is inadequate even 
as the lowest-order approximation. The flow visualization pictures of Brown & Roshko 
(19741, and later many others, present at  least two dynamically significant length 
scales: the size and separation of the vortex structures. We emphasize, that the exist- 
ence of structures per se is not suficient to ruin simple scaling. For there may exist 
mechanisms that produce a locking of all relevant length scales into fixed ratios, 
leaving effectively only one length scale. Simple scaling then follows. Judging from the 
empirical success of the self-preservation results, mechanisms of this kind may be 
expected. Stated differently, if the large wales prove to be exactly self-similar, then 
they must be independent of Reynolds number, since in the shear layer Reynolds 
number grows linearly with O ( t ) .  The other possibility is that there actually are several 
distinct length scales, but the violations of simple scaling, that they engender, are small 
and remain buried in experimental uncertainty. However, dynamical issues are 
involved here and some contact with the basic equations must be made. We Shall 
return to this line of argument in $4. It is important to note that these questions of 
principle are present in two dimensions as well as in three. 

An analogy with the dynamics of an isotropic, inertial subrange in three-dimen- 
sional turbulence should be noted. Again there is a simple scaling theory (Kolmogorov 
1941) that assumes a single dynamically determined length, (v3 /s ) f ,  and a single wave- 
number dependent characteristic velocity, ( e lk )+ ,  where E is the rate of dissipation and 
u is the viscosity. (The conventional ‘ - Q spectral law ’ follows by squaring this vel- 
ocity, and differentiating once with respect to k to yield an energy spectrum.) This theory 
describes the energy spectrum very well, but fails to account correctly for higher- 
order correlation functions. At the phenomenological level (Kolmogorov 1962; 
Frisch, Sulem & Nelkin 1978) intermittency effects in three dimensions are modelled 
by superimposing a secular trend on Kolmogorov’s cascade process. In  other words, 
the fluid ‘counts’ the number of cascade steps, - log,(kL), between the current scale 
size k-l and the largest scales L. In the shear-layer problem the hierarchy of vortex 
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mergings, i.e. the fusion of distinct islands of vorticity, defines an analogy of the cas- 
cade. Energy is of course now being shifted from smaller to larger scale sizes. Simple 
scaling, which like the Kolmogorov-Oboukhov theory ignores fluctuations associated 
with the spotty or intermittent nature of the flow, predicts asymptotic statistics that 
depend only on the velocity jump A U across the layer. All other details of the initial 
state are assumed to be wiped out. Such a picture may well be oversimplified, and if so, 
these turbulent flows could be completely non-universal. Or, in analogy with expec- 
tations for the three-dimensional cascade, there could be universal corrections to the 
simple scaling results as yet, neither measured nor calculated. 

To address the problem we have performed a number of numeiical simulations of 
the two-dimensional shear layer using the vortex-in-cell algorithm described by 
Christiansen (1973). The numerical scheme is discussed in $ 2 .  The coherent structures 
observed experimentally correspond to islands or blobs of vorticity in two dimensions. 
The vortex pairing in the mixing layer has as its counterpart the merging or fusion of 
two or more of these blobs of vorticity. This process constitutes a well-defined event. 
Extrapolations from experiment suggest that the two-dimensional shear layer will 
consist a t  every stage of a linear arrangement of blobs of vorticity. The blobs should 
merge, mainly by pairing with nearest neighbours, and thus increase in strength, size 
and mutual separation. The thickness of such a layer is simply related to the size of 
individual vortex blobs. One has to admit this picture as a logical possibility in the 
absence of quantitative theory. It was for example assumed by Takaki & Kovasznay 
(1978) in their kinetic model for the distribution of blob sizes and spacings. However, 
there are other possibilities. Conceivably the structures once formed could simply 
scatter more and more about the line on which they originate, leading to an ever 
thicker layer with merging of two or more structures occurring only through chance 
encounters. Contour and point plots of vorticity, produced from our simulation and 
presented in 8 3, suggest that some mixture of amalgamation and scatter of vortex 
blobs takes place. The shear layer consists at every stage of an array of clusters of 
vortex blobs. Each cluster is a bound state of a few vortex blobs. The size of these 
clusters, and hence the degree of scatter of the vortex blobs about the midline, deter- 
mines the layer thickness. The average size of individual islands of vorticity does not 
scale with the layer thickness, although it does increase in time as vortex islands within 
a cluster merge. 

In  $ 3  we also present and discuss scaling plots for the profiles of mean velocity, 
transverse and longitudinal velocity fluctuations, Reynolds stress and the inter- 
mittency factor. Some interesting fluctuations in the ReynoIds stress as a result of 
pairing events are displayed. Finally, we discuss the importance of the vortex struc- 
tures for the processes of entrainment and mixing of a passive marker. This leads us to 
suggest that flow visualization experiments using a dye may overestimate the size of 
vortex structures. 

In $4 equilibrium statistical mechanics is applied to the problem of determining the 
vorticity profile, a question addressed experimentally, in a low-Reynolds-number 
mixing layer, by Browand & Weidman (1976). Saffman & Baker (1979), extending a 
train of thought that goes back to Onsager (1949), have conjectured independently 
that equilibrium statistical mechanics might be relevant to the vorticity distribution 
within turbulent structures. If the vortices merge a t  some critical separation, and if 
they equilibrate between mergings, conservation of energy and angular momentum 
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suggest that the vortex profile converges to a universal form through successive 
mergings. All length scales based on a single vortex structure then scale together. If 
we could assume that a t  every stage the vortex blobs were simply arranged along a 
line, the conservation laws alone suggest that the ratio of vortex size to vortex separ- 
ation locks into a fixed value. These observations are relevant to discussions of the 
validity of simple scaling. In  $ 4, and again in $ 6, relationships with the dual cascades 
of isotropic turbulence in two dimensions (Kraichnan 1967 ; Batchelor 1969) are 
pointed out. 

We have verified that the results of $ 3 are insensitive to our level of spatial resolu- 
tion, truncation errors, residual anisotropy, etc. Consistency checks on the numerical 
procedures are discussed in 9 2 and again in $ 5  along with experimental results for the 
turbulent mixing layer. We conclude § 5 with a numerical study of the propagation of 
error from small to large scales as the shear layer evolves. This is achieved by com- 
paring two simulations with different spatial resolution. Section G contains a summary 
and outlook. 

2. Numerical scheme 
A two-dimensional flow field can be represented by an assembly of discrete vortices, 

and the time evolution of the field transcribed into a particle mechanics of the vor- 
tices. With N vortices, a time step in a direct summation scheme will involve evalu- 
ating N - 1 terms for the velocity of each vortex, and thus on the order of N 2  terms per 
time-step. For large N such a code will be very time consuming. Thus, the mixing- 
layer calculation of Ashurst ( 1  977), where the number of vortices was increased from 
1 to 800, required 250 hours of computing time on a CDC 6600. Understandably, 
previous direct summation calculations were much more modest. Michalke ( 1  961) 
studied the linear and partly nonlinear instability of 72 vortices arranged on three 
close parallel lines. Acton (1976) studied the same problem, but with 96 vortices 
arranged initially on four close sinusoids, and ran for a longer time. In  Acton’s 
simulation the sinusoid is seen to amplify, break and form two vortex blobs which 
then fuse into one. 

An alternate method for time-stepping vortices was described by Christiansen 
(1973) (see also Christiansen & Zabusky 1973). In  this algorithm the basic variables 
are still the positions and strengths of the vortices, but now a grid is laid down cover- 
ing the flow area. At every time-step a grid vorticity is generated by smoothing the 
vorticity from each vortex onto the four neighbourjng grid points. This grid vorticity 
is then used to generate a grid stream function by solving Poisson’s equation. The 
stream function is differenced on the grid to produce a velocity field, which is finally 
interpolated back to the vortex positions. The advantage of this apparently rather 
elaborate detour is, that  the Poisson inversion can be accomplished by fast Fourier 
transform techniques. If the grid is M x M ,  this is an order M210g, M calculation. 
Since the number of grid squares, M2, is some small multiple of the number of vortices 
N ,  this requires on the order of N log, N operations per time-step. (The smoothing and 
interpolations are order N operations). When N is large, N log, N is considerably 
smaller than N2. The method of Christiansen (1973), or cloud-in-cell method as it is 
sometimes called, is used in this paper with N = 4096 and M = 256 for the main 
calculation. In this algorithm the vortices effectively have finite cores, equal in size 
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FIQURE 1. Anisotropy of interaction velocity. Curve 1, y velocity along line parallel to z axis. 
Curve 2, tangential velocity along line at 45” to x axis. 

to a grid square. This is an advantage, since it makes the time evolution less singular 
than it would be for an assembly of point vortices, two of which could come very close. 
We refer to Zabusky (1 977) for a general review of numerical methods used to study 
structuresin turbulent flows. Seealso Leonard (1 980) and therecent ‘contour dynamics ’ 
approach of Deem & Zabusky (1978) and Zabusky, Hughes & Roberts (1979). 

Our basic flow box is a unit square with rigid boundaries a t  the top (y = 0.5) and 
bottom (y = - 0-5), periodically continued in the x direction. The initial configuration 
is a line of identical vortices with y = 0, and x between 0 and 1.  For the main calcu- 
lation the vortices are put down randomly along the midline. To obtain a regular roll-up 
the vortices are uniformly spaced and given a sinusoidal perturbation of the appropriate 
wavelength. Since a vortex is smoothed over four grid points, and since effects of the 
periodic boundaries are apparent when the layer has thickened to about one quarter 
of the flow box width, the number of vortices was chosen as AT = 0.25 x 0.25 x M2. For 
M = 256 this gives 4096 vortices. Various subsidiary calculations employed a 64 x 64 
grid with 1024 vortices. Putting in more vortices would not improve spatial resolution. 
All computations were performed on the CRAY-1 computer at the National Center for 
Atmospheric Research (NCAR). 

One pays a price for the computational efficiency of the cloud-in-cell scheme. It 
turns out, that the interaction of two vortices becomes anisotropic and depends not 
only on the separation of the vortices, but also on the angle between the separation 
vector and the axis of the grid: figure 1 illustrates this effect. We placed a vortex at 
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random within a grid square and calculated the y velocity induced a t  a series of 
positions displaced along the x axis. This gave the curve labelled 1 in figure 1. We also 
calculated the tangential velocity along a line at an angle of 45' with the x-axis. This 
gave curve 2 in figure 1. The anisotropy is readily apparent. At separations larger than 
a few grid spacings the velocity is essentially isotropic. 

We have dutifully worried about this point. The importance one is willing to attach 
to it depends on the type of problem under investigation. If the objective is to study 
the instability of some steady configuration of vo1 tices, we believe, that it is crucial to 
eliminate the anisotropy. Christiansen ( 1973) showed, that a system of 3002 vortices, 
arranged to simulate a disk of uniform vorticity, produced spurious boundary wave 
modes, although the conservation laws were well maintained. He traced this numerical 
error of the cloud-in-cell scheme to the velocity anisotropy. Let us anticipate, that our 
flow will evolve into an arraiigement of con;pact vortex blobs, separated on average by 
several times their radius and thus many grid spacings. The code will then correctly 
produce isotropic interaction between blobs. Since it breaks rotational invariance, the 
anisotropy would tend to make 

L2= ( 1 / N ) x r 2 ,  (2.1) 
a 

drift in time. Here ra is the distance of vortex a from the centroid of the assembly, and 
we have assumed all vortices to have the same strength. It was this quantity, that we 
loosely referred to as the angular momentum in 5 1. We have checked that L2 is in fact 
well conserved for a system of 250 vortices arranged to resemble one of the vortex 
blobs seen in the simulation. The code also conserves the vortex blob energy. We 
believe ( 3  4) that preservation of both energy and L2guarantees that we will reproduce 
the correct statistical mechanics for vortex blobs, and this is our main point of concern. 

Nevertheless, we have redone several runs with an isotropic interaction velocity- 
generated by truncating modes at high wavenumber in the Poisson inversion. Fourier 
components of the stream function were set to zero outside a circle in wavenumber 
space with radius equal to half the maximum wavenumber fully represented by the 
chosen grid. This is equivalent to Smoothing the vortices over more than the four sur- 
rounding grid squares. Buneman (1973) and Hockney, Goel & Eastwood ( 1  974) have 
considered more elaborate real-space smoothing schemes, and have shown that these 
will reduce the anisotroyy effectively to zero. On a vector machine like the CRAY-1 
however, it is more efficient to do the smoothing in wave-vector space using a cut-off. 
The reason is clearly that the two-dimensional FFT is vectorizable and goes very fast, 
while the smoothing operations involve a random look-up that does not vectorize 
and should thus be kept as simple as possible. Our code required about as much time 
to do the simple four-point smoothing as it needed to do the Poisson inversion. A 
simulation run with the wavenumber cut-off showed no significant differences from 
the results reported later in the paper. 

Since the most time consuming part of the code is the evaluation of the vortex 
velocities, it is clearly advantageous to use a time-stepping scheme that takes as large 
time-steps as possible for a given accuracy. Some initial experimentation convinced us 
that we would do considerably better with a predictor-corrector method than with the 
traditional leap-frog scheme. The time-stepping algorithm adopted is the code STEP 
of Shampine & Gordon (1975). 

A cloud-in-cell vortex code does not exactly conserve the grid kinetic energy or the 
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FIGURE 2. Roll-up of a sinusoidally perturbed, regularly spaced line of identical vortices from a 
run with 4096 vortices on a 64 x 64 grid. Only half the layer is shown. 

grid enstrophy. The former fluctuates randomly (by approximately 0-1 % during the 
entire simulation), while the latter gradually decays. All circulation integrals around 
loops larger than about one grid square are conserved however. The gradual decay of 
enstrophy in the simulation has a natural interpretation. The finite spatial resolution 
imposed by the grid acts as an eddy damping on the smallest scales, and destroys any 
enstrophy that reaches these scales. We shall discuss this in more detail in $4. Errors 
in the integration, from time-stepping inaccuracies or truncation, will tend to act like 
random noise and thus diffuse vortex blobs. As we shall see, there is very little diffusion, 
and the blobs are surprisingly compact and stable. 

We include in figure 2 a sequence of pictures showing the initial regular stages of 
roll-up of a vortex sheet. The initial condition used to produce this figure was a line of 
4096 vortices regularly spaced and given a sinusoidal perturbation of small amplitude. 
The underlying grid used was 64 x 64. Figure 2 reproduces only half the layer. Perfect 
periodicity was enhanced by choosing the wavelength of the perturbation to be an 
integral number of grid spacings. The regular wrapping up of the layer observed is in 
qualitative agreement with theoretical expectations (cf. Damms & Kiichemann 1974). 
The existence of many regular windings within each rolled upvortex core indicates that 
truncation and time-stepping errors are indeed well controlled. As the evolution 
continues, the fine structure in the outer regions of each of the big vortices is obliter- 
ated. The central S-shaped feature survives until the first pairing. We have also 
compared this layer with a run starting from a regular, sinusoidally perturbed line of 
only 256 vortices, each of which was 16 times as strong as those in the previous run so 
that the velocity jump across the layer was the same. From contour plots of the 
grid vorticity a t  a given value of the layer thickness it is impossible to discern this 
difference of a factor 16 in the number of vortices used. 
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3. Results of numerical simulation 

simulation. From these values we can calculate approximate x averages, such as 
The fields of vorticity 6 and velocity (u, v) are known on the points of the grid in our 

etc. If we imagine increasing the size of the simulation, the averages c, U, . . . must con- 
verge. We could equally well reduce fluctuations by averaging over initial conditions. 

The mean velocity U goes to a constant value, $AU, well below the shear layer, and to  
- 4AU well above it. Thus we can introduce the length 

as a convenient measure of the layer thickness. There are of course many other 
measures of shear-layer thickness. The momentum thickness (3.3) was used by 
Winant & Browand (1974) and by Browand & Weidman (1976). 

Asymptotic self-preservation requires, that any other transverse length scale 
become a fixed multiple of I3 as the flow evolves, and that simple scaling should bold. 
For example, we want to check 

- 
(3.4) u2 - -2 - u - (AU)Y,(Y/I3), 

along with ( l . l ) ,  where the functions f, fii, f,, f ,  are universal. The thickening rate 

r = (dO/dt)/AU (3.7) 

should be a universal number. Our simulation gave r = 0.02 with an uncertainty of 
about 30 % (cf. figure 3). This value is consistent with experimental values for the 
mixing layer (Browand & Latigo 1979). The obvious transcription from temporal to 
downstream evolution gives d8/dx = 2rA for the mixing-layer growth rate, where r is 
given by (3.7). 

In the simulation @ ( t )  was calculated at each time-step. The variation of I3 with time 
is shown in figure 3. Roughly, 8 grows linearly with time. The momentum thickness 8 
does not vanish at t = 0 owing to the finite spatial resolution imposed by the grid. The 
initial growth of 8 in a real fluid is not linear in time but proportional to (vt)3 where v 
is the kinematic viscosity. As the layer thickens aria Reynolds number increases a 
cross-over to linear growth occurs. This happens early in our simulation because of the 
very small amount of dissipation. The wiggles in 8(t)  reflect that the layer thickens 
through interactions among large vortex structures. The number of these macro- 
vortices captured in our simulation is a t  most 30-40 and decreases as the layer thickens. 
The wiggles in 8(t) are statistical fluctuations due to the finite size of the simulation. 
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FIGURE 3. Variation of the momentum thickness, O ( t ) ,  for our principal calculation with 4096 
vortices on a 256 x 256 grid. The dimensionless growth rate r, (3.71, equals 0.02.. The pairs of 
dashed lines delimit time intervals over which the z-averaged velocity profiles were time averaged. 
The symbols correspond to those in figures 11-14. 

This is discussed further under ( e ) .  We believe that in an ensemble average of runs the 
wiggles would be eliminated. The simulation was terminated when about 8 large 
vortex structures remained. This is comparable to the state at  wh'.h previous numeri- 
cal work began. 

Several dashed lines appear in figure 3, all except one are in pairs and the first four 
pairs have a symbol drawn in between. The left line of each pair and the single line at 
t = 24.9 correspond to values of 0 given by 256 x 8 = 1,42,2,242,4,442,  respectively. 
Vorticity pIots corresponding to these values of 6 appear in figures 4, 5, 6 and 7. At 
each of these values of 0 a time average of profiles, scaled by the current value of 8(t) ,  
was initiated. The time average ran from the left-hand to the right-hand dashed line in 
each pair. The momentum thickness 6' increased by about 10% during each time 
averaging. The time-step, which was variable, was recorded and used to weight the 
terms in the average. A variance was also calculated to assess the magnitude of fluc- 
tuations. Scaled, time-averaged profiles corresponding to different states of evolution 
of the shear layer are shown in figures 10-14. The symbols used in figures 11-14 
correspond to the symbols in figure 3. The reader should have little trouble cross- 
referencing the figures. We now discuss the results in turn. 

(a )  Flow visualization 
Figures 4 and 5 show point plots of vorticity for the left half of the shear layer at  
selected values of 8. Only a band down the middle of the 256x 256 grid is shown. 
There was no vorticity outside the band shown. Figures 6 and 7 show contour plots 
of one-fourth of the shear layer, again displayed to bring out the time evolution. It is 
clear from these pictures,. that the shear layer has already rolled up into discrete 
vortices at 6 '= 1/256, and that the dynamics of these structures dominates the 
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FIGURE 4. Point plot of vortices, for one half of the simulated layer, 0 < 2 < 0.5. 8 increases 
from top to bottom such that 256 x B = 0.64, 1, J2, 2 lattice spacings. 

L 

FIGURE 5. Continuation of figure 4 for 256 x 0 = 2 J2 (top), 4 (bottom). 

evolution. The plots show that the macro-vortices have a peaked distribution of 
vorticity, and that they are well separated with a lot of irrotational fluid in between. 
This is a very different conceptual picture of the shear layer than the traditional band 
of random vorticity implicit in most discussions that start from Reynolds' equations. 
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FIQURE 6. Contour plots of vofticity for one quarter of the simulated layer, 0.75 < x < 1-0, with 
8 increasing top to bottom: 256 x 13 = 1, J2, 2. The small arrows indicate the centre-line. The 
grid vorticity divided by its maximum has been contoured using the same levels in each panel. 

In  figures 6 and 7 the grid vorticity [(x, y, t )  normalized by its maximum value 
cmax(t) has been contoured using a fixed set of contour levels for all times. (We are 
indebted to F. K. Browand for suggesting this way of displaying the data). The layer 
thickness 8 increases by a factor of 4 2  from one panel to the next in figures 6 and 7. If 
the vortex blobs acale it should be possible to obtain one panel from the previous one 
(in an average sense) by multiplying all lengths by 4 2 .  This is clearly not the case in 
our figures. The individual vortex structures do not grow nearly fast enough. To make 
this point quantitatively, we calculated short time averages of 

(3.8) 4(4 = /d+Y 6(x, Y, t )  a. + r ,  Y, t )  

Jdr) = /dzSdy[ (s ,y , t )6 (z ,y+r , t )  (3.9) 

and 

for r = 0 ,1 ,  . . . , 30  grid spacings. Normalizing by the lattice enstrophy, we get the 
correlation coefficients. These drop very rapidly from their maximum of unity. The 
widths of the correlation at  half maximum are summarized in table 1. Although 
the widths do increase, it is clear, that they do not scale with 6. Equivalently, the 
scaling form that one would write down for the correlations on the basis of self- 
preservation theory is not verified. According to table 1 the vortex blobs are initially a 
bit elongated in the x direction as one would expect. However, when B x 256 = 4 the 
vortex structures have become circular to within statistical fluctuations. 
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FIGURE 7. Continuation of figure 6 for 256 x 0 = 2 J2, 4, 442. The insert shows the vorticity 
profile from equilibrium statistical mechanics (3  4). 

e x 256 1 J 2  2 2J2 4 

y offset 1.16 1.30 1.34 1.49 1.80 

TABLE 1. Widths, in grid spacings, of x-offset and y-offset vorticity correlation coefficients aa 
function of 8. 

x offset 1.26 1.42 1.58 1.65 1.77 

The pictures in figures 4-7 suggest that the vortices scatter more and more about the 
midline as 0 increases. To check this, the positions of the large vortices were found 
every 5 time-steps. From their transverse co-ordinates we calculated the average 
{I YI )  of the absolute values and the variance { Y2)*. (The average { Y )  was always 
close to 0.) In figure 8 we show ( Y2)*/0 as a function of 0. We see that this ratio quickly 
settles down to a value close to 1.75. The distribution of these macro-vortex co-ordi- 
nates apparently also quickly relaxes to a fixed form. This is seen in figure 9 where 
(Y2)*/(l  YI)  is plotted versus 0. The average value of ( Y2)tj(l  Y ( )  is 1.25. If Y were 
Gaussianly distributed this ratio would be (in)& 

We also calculated the Fourier transform of vorticity integrated across the shear 
laver. i.e. 

1,253. 

Y I  

dx exp ( - ikx) dy c (x ,  y, t ) .  s (3.10) 
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FIGURE 9. Relaxation of the scatter of vortices to a fixed limiting form. The line marks the 
average value of (Ya)*/(l Yl) .  

The spectrum of amplitudes Ix(k)J2/Jz(O)J2 displays the distribution of excitation at 
various length scales along the layer. As expected the wavenumber of maximum 
amplitude moves towards k = 0 as the layer evolves. This implies that the real space 
distribution of vorticity along the layer becomes lumpy on a coarser and coarser scale 
as the layer thickens. This lumpiness is not associated with large vortex regions 
that span the width of the layer, but rather with clusters of smaller blobs (see 
figures 4-7). A cluster is a bound state of several distinct islands of vorticity. 
The bottom panel in figure 6 for example shows a cluster with four vortex blobs 
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FIGURE 10. Scaling of mean velocity profiles. The scaled profiles at four values of 8, 256 x 0 = 1, 
JZ,  2, 242, are superimposed. 

and two clusters with only two blobs each. A cluster will be surrounded by a closed 
streamline. 

Thus, putting these observations together, we do not see a linear arrangement of 
vortex structures that merge with neighbours and thus grow in size, but rather a more 
complex sequence of events. Our vortex structures generally first form bound clusters 
(figures 4-7)) within which the probability of a close encounter leading to vortex 
merging is enhanced. The clusters, however, can cluster again before a complete 
merging of the vortices within them has taken place. The size of individual vortex 
structures thus lags behind the simple scaling prediction. The layer still thickens 
linearly in time, at  least approximately, since the degree of dispersion or scatter of 
vortex structures about the midline, and hence the size of the clusters, increases 
linearly with time. 

If we consider the shear layer as a line of clusters of vortex blobs, each cluster having 
a radius S (the radius of the bounding streamline say) that scales with 0, and if we 
assume that the location of a blob within a cluster is uniformly distributed, i.e. 
the blob can be anywhere within the disk with equal probability, then it is easy to 
calculate, that the probability P( Y )  dY of finding a blob center within the band 
Y - & d Y  < y  < Y+&dY isgivenby 

P( Y)dY  = ( 2 / 4  (1 - (Y/X)2)4d( Y /S ) .  (3.11) 

For such a distribution ( Ya)*/(l YI) = #7r 1-18. 
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figure 3. 

( b )  Mean velocity projles 

Superimposing the four earliest time averaged mean velocity profiles yields figure 10. 
Since the profiles are virtually identical, we have not tried to distinguish them. Scaling 
of the mean profile is not a very sensitive test of self-preservation. 

(c )  Velocity jluctuations 

Figures 11 and 12 test the scaling relations (3.4) and (3.5). The continuous line in these 
and later point plots represents a simple average of the four sets of data and is only 
intended to help guide the eye. Although the data do show some scatter, there is no 
systematic violation of (3.4) or (3.5). Better scaling could be obtained by doing a 
longer-time average, or doing an ensemble average over several simulations (which is 
costly in computer time). It is of interest to  note that the peak values of the u and v 
fluctuations, normalized by AU, are about 0.25 and 0.30 respectively. 

(3.12) 
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figure 3. 

and from it the intermittency factor 

y =~oldxI ( . ,Y , t ) .  (3.13) 

In  the simulation the test < > 0 was replaced by 6 > q, where q is a small fraction of the 
strength of an elementary vortex. The values of y did not change when q was decreased 
by a factor 100. 

The scaling form for y is simply 

Y = dY/@, (3.14) 

and figure 13 checks this relation. It is noteworthy, that y drops to about 0-65 on the 
axis. The low peak value of y is consistent with the well separated vortices, but figures 
6-7 would have suggested even smaller values for y.  There are however non-negligible 
regions of low vorticity suppressed by the finite number of contour levels used in these 
figures but apparent in figures 4-5. This ‘debris‘ arises during the merging of vortices 
(cf. Christiansen 1973) and can also occur if a vortex is torn apart in the shear field of 
its neighbours (Moore & Saffman 1975) although we have not actually seen this 
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FIGURE 13. Scaling of intermittency factor. The symlzols correspond to those in 
figures 3, 11 and 12. 

happen. It is an open question whether the vortex structures will persist or whether 
they will very gradually diffuse away into a slowly increasing background of distri- 
buted vorticity. 

( e )  Reynolds stress 

The scaling given by (3.6) is not satisfied at  all well in our simulation as figure 14 
shows. We do not think of this as a systematic deviation but simply as the result of 
large statistical fluctuations in a small sample. To show this more clearly, we con- 
sidered a very simple flow with only four large vortices. These were generated by 
superimposing a sinusoidal wave, of the appropriate wavelength, on an initial, 
regularly spaced line of vortices. As the four vortices paired, we monitored the Rey- 
nolds stress. Figures 15(a, b,  c )  show three of the results together with the vortex 
configurations that produced them. Because of cancellations due to fluctuations in 
sign of uv, apparent in figures 15, one needs better statistics on this quantity than on 
the longitudinal and transverse velocity fluctuations which are positive definite 
quantities. In a large system, & is a sum of contributions from pairs in various stages 
of relative rotation or amalgamation, and a much longer layer than ours (or an en- 
semble average) is necessary to produce smooth averages. 

The statistical fluctuations discussed here are related to the wiggles in the O ( t )  graph 
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FIGURE 14. Test of Reynolds’ stress scaling. The symbols correspond to those of figure 3. 

in figure 3. To see this we note the formula 

6 = 2/dy[G/(AU)z, (3.15) 

where 5, uv are x averages as in (3.1), (3.2). Equation (3.15)) which is derived in an 
appendix, follows simply from the definition (3.3) of 8 and the two-dimensional Euler 
equations. Since [ is always positive, 8 will grow as long as is positive. Negative 
excursions of & will impede the growth of 8. 

For these reasons the earlier computations of Acton (1976), containing only two 
large vortices, were insufficient to say much about the shear-layer problem. 

_ -  

( f )  Entrainment and mixing 

Figures 16(a,  b ,  c) give some qualitative insights into the interaction between the 
vortex structures and a passive marker during the process of entrainment and mixing, 
a problem studied experimentally by Dimotakis & Brown (1976). A line of 512 markers 
was introduced well above the vortices. Figures 16 (a, b,  c) show that the markers were 
quickly pulled in between the vortices. Some of the markers appear below the shear 
layer after one period of rotation of the large vortices. Small-scale structure in the 
marker density is quickly created. The markers really never enter the regions of high 
vorticity but are continually stirred as the vortices move about. Hence the coalescence 
of vortices seems to play only a minor part in the mixing. 
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FIGURE 15 (a) for legend see page 726. 

An intermittent distribution of vorticity is crucial if the two-dimensional shear 

Dc/Dt = 0 (3.16) 

layer is to mix a passive scalar efficiently. In  the absence of viscosity 

is the equation of motion of vorticity, and in the absence of diffusion 

Ds/Dt = 0 (3.17) 

governs the evolution of the scalar density s; DIDt is the material derivative. Thus for 
every realization 

D<s/Dt = 0 (3.18) 

in this limit. Now if the vorticity always occupied a uniform band (with the inter- 
mittency factor equal to unity on the centre-line), only diffusive effects would allow 
scalar starting above the layer to be mixed with scalar below. This process differs in 
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FIGURE 15 ( b ) .  For legend see page 726. 

essential ways from the entrainment by large structures that actually occurs. Diffusive 
mixing is almost entirely inhibited in our simulation, yet transport of scalar across the 
shear layer takes pIace in one large eddy turnover time due to the existence of an 
intermittent dis ti ibution of vortex structures . 

Figure 16 (c )  shows the marker thoroughly mixed. Had we not shown the vorticity 
distribution along with the markers in this picture, it would have been very difficult 
to guess even the number of discrete vortex blobs. The overall distribution of marker 
would suggest just one large vortex in figure 16 ( c ) .  This point is worth keeping in mind 
when interpreting flow visualization experiments. The vortices producing a given dye 
pattern could be much more compact than the distribution of dye would suggest. The 
clusters of vortex blobs observed in the later stages of our simulation would probably 
appear as single structures in a dye experiment. 
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FIGURE 15. Three insbantaneous views of the Reynolds’ stress and vorticity distribution during 
vortex pairing. 

4. Statistical mechanics of vortices 
Two finite area vortices will rotate around one another and merge on a time scale no 

shorter than R2/J?, where r is the total circulation of one vortex and R is their separ- 
ation. On the other hand, the time scale for internal motions within each vortex isof the 
order L2/r ,  where L2 was defined in (2.1).  If R L one expects that the individual 
vortices will equilibrate between mergings. The inequality R > L is definitely satisfied 
in our simulation, and we are led to suggest that the vorticity profile of any individual 
vortex blob should be calculable from equilibrium statistical mechanics. The problem 
of finding the equilibrium distribution of an isolated system of identical point vortices, 
making up a finite area vortex, has been considered by Kida (1975) and by Lundgren 
& Pointin (1977). 
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FIGURE 16. Entrainment and mixing of passive marker. The vorticity has been contoured and 
the markers are shown as points. 

In  the notation of the second paper, the basic variable is the overall vorticity profile, 

C(r) = (F/L2)  P( r IL ) ,  (4.1) 

which is determined from an integral equation for the function P, 

The constant C is determined such that 

dqP(q) = 1.  (4.3) s 
Equation (4.2) is simply an integrated form of the Poisson equation for the stream 
function, where the vorticity has been evaluated in a canonical ensemble based on 
conservation of energy and L2. In  linearized form, and neglecting the angular momen- 
tum L2, (4.2) reduces to the familiar Debye-Hiickel theory of a plasma (Landau & 
Lifshitz 1969). There is a one parameter family of equilibria distinguished by the value 
of the parameter A, - 1 < h < co. It follows from (4.2) and (4.3) that 

Jdr l72Ph)  = 1,  (4.4) 

i.e. that the L2 appearing in (4.1) is given by (2.1). Here F is the total circulation of 
the finite area vortex. The energy of the vortex is 

E = r 2 ( E ( h )  - (1/4n) In (L/Z,,)), (4.5) 
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where 1, sets the scale of length and 

W) = ( -  v 4 n ) J d + w l n  I?-?~I  p ( v ( q ~  (4-6) 

With P determined from (4.2), the function # ( A )  is a monotone decreasing, convex 
function of h that goes to infinity as A+ - 1, and to a fixed value as h+m. In the 
infinite h limit the vortex blob is just a uniform disk of constant vorticity. For A = 0, 
P(7) is a two-dimensional Gaussian as is seen directly from (4.2). As A+ - 1 the 
vorticity profile becomes more and more peaked. For a given h the integral equation 
(4.2) can be solved numerically by iteration. The reader is referred to the papers 
cited for further details. 

We shall assume that this distribution, (4.1), gives the vorticity field C(r) within 
one of the macro-vortices produced in our simulation and ignores fluctuations due to 
the finite number of point vortices that form such a structure. In figures 4-7 the num- 
ber of elementary vortices making up a single large vortex increases from approxi- 
mately 100 to 500 during the course of the calculation. Let us also ignore differences 
between the one point approximation and the exact distribution, and ask whether for 
the two-dimensional shear-layer problem we are using the correct ensemble. Should 
we, for example, have chosen an ensemble consistent with enstrophy conservation? 
This question did not arise in the work of Kida (1975) or Lundgren & Pointin (1977), 
since they start with an assembly of a large but finite number, N ,  of point vortices. 
Any invariant of the Euler equations which is some function of the vorticity(a1though 
it may be formally infinite for point vortices) is then taken into account a t  every step 
of the calculation by keeping the number of vortices and their strengths fixed. However 
in the final results the limit AT + 00 is taken and this destroys conservation of enstrophy. 
Indeed, if we start with two well-separated equilibrium vortex blobs, let them merge 
and conserve E and L2, the distribution of vorticity in the final equilibrated blob can be 
calculated using Lundgren & Pointin's (1977) theory. The enstrophy thus calcuIated 
will in general be smaller after merging than before. This, we argue, is physically correct. 

In the continuum fluid, with a small but finite viscosity, two merging vortices will 
wrap around each other, and vortex fluid will get drawn out into long, thin filaments. 
Eventually viscous effects will dominate in these filaments, no matter how small the 
viscosity is, and enstrophy will be destroyed. This is similar to the traditional picture 
of an enstrophy cascade (Kraichnan 1967; Batchelor 1969), but with the important 
difference that here the vorticity is all of one sign, and the cascade turns on as the 
vortex structures merge, but is turned off within a single equilibrated blob. The value 
of the enstrophy of a vortex blob in this picture simply adjusts to what it must be in 
equilibrium for given values of E and L2. In somewhat different terms, the back 
transfer of energy that accompanies the usual enstrophy cascade is inhibited by the 
conservation of L2. In our numerical simulation we do not have a real viscosity, but the 
finite spatial resolution of the grid destroys enstrophy that reaches the smallest 
scales. From runs with only a few vortex blobs we have numerical evidence that the 
lattice enstrophy decreases when a vortex merger goes to completion. 

Although each vortex blob in the shear layer is deformed by the velocity field due 
to all the others, the vorticity plots in figures 4-7 and the data in table 1 show the 
blobs to be approximately circular on average, and SO we shall ignore the deformation 
in the following arguments. 
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We now consider the merging of two vortex blobs more quantitatively. Assume for 
simplicity that they both have the same circulation I?, the same L2 relative to their 
centres and the same value of A. This configuration should ultimately equilibrate and 
end up as one vortex blob with a circulation r' = 2r ,  and new values L I Z  and A' of the 
other two parameters. For large initial separations R, i.e. R/L  1, this is a slow pro- 
cess which will involve the diffusive growth of each blob due to the action of the rapid 
internal motions in the other (Lundgren & Pointin 1977). However, if R is less than 
some critical separation R,, which will depend on A and L2, convective merging takes 
place on a time scale R2/r  (Christiansen 1973; Rossow 1977). The function R, = 
R, (A ,  L2) can be determined numerically. For example, using 72 vortices arranged 
initially to simulate two uniform blobs, Rossow (1977) found R, (co, L2) = 4.651;. In  
any case, the new single blob has 

Ll2 = L2 + 0*25R2 

by conservation of L2 for the total system, and application of the parallel axis theorem. 
By conservation of energy, 

(4.7) 

2l?(A') = l?(A) + (1/4n) In (Lf2/LR). (4.8) 

In equation (4.8) the dependence on R comes from the interaction energy of the two 
initial, circular vortex blobs, and the arbitrary scale I ,  has dropped out as it should. 

It follows from (4.7) that L'2 > LR, and thus from (4.8) that g(A') > 0.5E(A). 
Hence if ,!?(A) is negative A' must be less than A ,  and the resulting single vortex must be 
more concentrated than its ancestors. This argument suggests that the vortices in the 
shear layer, which initially do not have a very peaked vorticity profile, become more 
and more concentrated through the merging process, a t  least during the first few 
merging events. 

Now consider only the fast convective merging of close blobs, ignore the eventual 
diffusive merging of more distant blobs, and thus assume that all merging events 
occur when R = R, ( A ,  L2). If A quickly converges to an asymptotic value A* through 
successive mergings, R, becomes simply a multiple of L 

R,(A*, L2) = fL,  (4.9) 

where f is a pure number. Substituting R = R, = f L  in (4.7), the ratio L'2/LR may be 
re-expressed in terms off. Substituting this into (4.8) and setting A' = A = A*, we get 

l?(A*) = -(1/4n)ln(f/(l+0-25f2)). (4.10) 

Equations (4.9) and (4.10) in principle determine the asymptotic parameters A* 
and f. 

We can further sharpen our results for the asymptotic blob profile in the hypotheti- 
cal situation where all the blobs remain collinear. This contradicts our numerical 
results, but it is interesting to follow through since it indicates how through successive 
pairings random initial length scales can lock into a universal ratio. A single length 
scaIe remains, and scaling as in (l.l), (3.4)-(3.6) follows. We use only the conservation 
laws to derive the locking. The complicated dynamical information implicit in the 
function R,(A, L2) is not needed. 

Consider then a line of equilibrium vortex blobs, all of the same circulation r,, 
the same size L, and with separation R,. The index n refers to the generation. Assume 
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the vortices merge, roughly in phafe along the line, to yield the n+ l'st generation 
blobs characterized by I?,,,, L,+l, R,+l, and so on. The theory must establish recursion 
formulae that enable one to calculate I?,,,, L,+l, R,+l given r,, L,, R,. In  this model 
the layer thickness 8 is proportional to the blob size L. 

Assume that on the average b blobs of generation n merge to one blob of generation 
n + 1. Then, by conservation of vorticity 

rn+1 = brn ,  (4.11) 

and since the velocity jump AU remains constant 

thus 
r n + l / R n + 1 =  rn/Rns 

R,+, = bR,. 

(4.12) 

(4.13) 

Finally, by using the parallel axis theorem the conservation of L2 when b blobs on a 
line merge to one requires 

L$+, = Li+(b2- 1) R$/I2. (4.14) 

Equations (4.11), (4.13), (4.14) provide the desired recursion relations. 
It is easy to solve (4.13) and (4.14) together. One finds that regardless of the initial 

values L, and Rl( > 0 ) ,  and regardless of the value of b ( > l), the solution will always 
asymptotically approach 

R/L  = 2 J3.  (4.15) 

This says that the two length scales R and L lock into a fixed ratio after a number of 
pairings. In the notation of (4.9) we would have f = 243. 

Consider for b = 2 the equation, (4.8), for energy conservation during pairing 

' f l ( A n + l )  = E ( A n )  + (1/4n) In (Li+l/LnRn). (4.16) 

For large n we can relate L, to R, and L,+l to R,+, by (4.15). Then, using (4.13), we 
see that ,!?(An) converges to the fixed value E* = (1/8n)ln(4/3) = 0.01145. From 
equation (4.6) this corresponds to a value of A* z - 0.945, and to a universal, scaled 
vorticity profile P. The value of A* is close to - 1, the'lower bound for A ,  and the 
corresponding vorticity profile is very peaked. According to Lundgren & Pointin 
(1977), <(r)  is then approximately [ ( O ) / (  1 + A(r/L)2)2, where A is a scale factor. In the 
insert in figure 7 we have plotted contour lines of 1/( 1 + r2)2,  roughly on the scale of 
the vortices in the simulation. Point plots like figures 4-5 and the data in table 1 show 
the vorticity distribution of a single finite area vortex to be a roughly circular cloud 
of points. 

We do not want to claim very much for this theory. The general arguments still 
leave much to be explained and the one-dimensional model is not realistic. Further- 
more, effects of fluctuations in I?, L and R have not been taken into account. However, 
the idea that the vorticity distribution in a large turbulent structure is simply calcu- 
lable from equilibrium statistical mechanics is important and is consistent with our 
numerical results. It suggests that all length scales based on a single structure do 
indeed lock into fixed ratios. The concept of an internal equilibrium of the shear layer 
also suggests novel theoretical approaches to the problem as discussed in 0 6. 
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5. Discussion 
We are not aware of any experiments on a very long unsteady shear layer that are 

directly relevant to our numerical results. When we compare our simulation with 
mixing-layer experiments, a number of discrepancies are apparent. The intermittency 
factor on the midline of the simulation peaks a t  a value of about 0.65 as mentioned in 
$ 3  ( d ) .  This is much lower than experimental values for the mixing layer, where the 
intermittency factor on the axis is typically very close to unity. We attribute this 
mainly to effects of viscosity and vortex stretching in the mixing-layer experiments. 

Our dimensionless values of peak velocity fluctuations are high compared to mixing- 
layer experiments. Furthermore, the transverse fluctuations are larger than the 
longitudinal fluctuations in our Simulation. While this is also the case in the mixing 
layer a t  low Reynolds number (Browand & Weidman 1976), a t  high Reynolds number, 
which is the regime of our simulation, it is known that the reverse inequality holds 
(Wygnanski & Fiedler 1970). The experiments, however, also tend to have velocity 
fluctuations in the spanwise or z direction of magnitude comparable to the y-velocity 
fluctuations, indicating a non-negligible degree of three-dimensionality in the flow. 
Thus, we do not really expect dimensionless ratios, calculated in our two-dimensional 
shear-layer simulation, to match high-Reynolds-number mixing-layer experiments. 
MJe recall that Ashurst (1977) had problems matching his two-dimensional mixing- 
layer simulation, which included viscous effects, to the low-Reynolds-number experi- 
mental results of Winant & Browand (1  974). 

Delcourt & Brown (1979) have recently produced a numerical simulation of the 
shear layer. They use 750 point vortices and an algorithm (the ‘centre-to-centre 
method’) that restricts the vortices to the sites of a grid a t  every time-step. Just as in 
the direct summation scheme the computation time scales as the square of the number 
of vortices. Their vorticity plots appear comparable to our figures 4-5, although we 
believe diffusive effects are larger in their simulation. They point out that using a 
simple Euler method time-stepping greatly enhances the effective viscosity for a 
cloud of like-signed vortices. Thus the earlier simulation by Ashurst (1  977) could have 
had a much lower Reynolds number than intended. Already a second-order time- 
stepping method, and certainly the one used here in which the order was variable and 
typically equal to four, nearly eliminates this effect. Inspection of the pictures of 
Delcourt & Brown (1979) reveals some of the same scatter in the positions of the 
centres of the vortex blobs about the midline as we find. Ashurst’s (1977) work displays 
virtually no scatter around the midline. Thus we tentatively suggest that this mech- 
anism or mode becomes predominant as the Reynolds number increases. We intend to 
check this conjecture in the future. 

We have run a number of internal consistency checks to demonstrate that our 
results reflect properties of two-dimensional turbulence and not numerical artifacts. 
To check the high fluctuation levels we have varied the wavenumber cut-off, described 
in $ 2, which effectively means altering the vorticity profile of the elementary vortices. 
This did not change the levels of fluctuation at all. We also took a vortex configuration 
from a 64 x 64 grid simulation and, in a purely static comparison, smoothed it onto a 
32 x 32 grid and compared fluctuations. As one would expect, this operation did 
decrease the fluctuations but only by about 3 %. 

The peaked vorticity profiles observed in the simulation are qualitatively in accord 
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with the conditional sampling measurements of Browand & Weidman (1976). This is 
the only experiment, to our knowledge, in which a direct measurement of vorticity 
has been made. It is a low-Reynolds-number experiment, and it uses a conditional 
sampling technique that may have missed the qualitative feature of vortex scatter. 
The fragmented distribution of vorticity that we observe within the clusters in figures 
4-7 for a single realization may well become a single-humped distribution in a con- 
ditionally sampled average. It would be interesting to  see experimental technique 
refined to the point where vorticity contour plots, comparable to our figures 6 and 7, 
were readily produced. 

Previous theoretical attempts a t  explaining the vortex dynamics of the shear layer 
become rather unconvincing in the light of our simulation. The model of Winant (see 
Winant & Browand 1974), which employs a juxtaposition of two exact solutions of a 
laminar shear layer due to Stuart (1967), is not dynamical since the resulting flow does 
not satisfy the equations of motion. Another shortcoming of this model, and related 
models based on the instability of a row of vortices (Saffman & Baker 1979), is the 
implication that the thickening proceeds in phase along the entire shear layer, i.e. is 
not statistical. The possibility of scatter about the midline is also not taken into 
account. The tearing mechanism of Moore & Saffman (1975), while plausible, appar- 
ently plays only a minor role. The vortices actually observed are not uniform but, as 
we have noted, very compact. Such blobs are more difficult to tear apart than the 
uniform vortices considered by Moore & Saffman (1975), and so this mechanism is 
suppressed. The most promising attempt a t  a simple theory is the one-dimensional 
vortex kinetics of Takaki & Kovasznay (1978). Their theory suffers from the same 
deficiency of ignoring the scatter as our one-dimensional shear-layer model in $4, but 
whereas we see a justification of simple scaling as an outstanding theoretical problem, 
Takaki & Kovasznay (1978) assume this scaling in solving their dasic equation. 

Apart from the numerical tests already mentioned, we have tried to assess to what 
degree a simulation, like the one a t  hand, can actually faithfully follow a flow that 
spans an ever widening range of scales. To address this question, the same configur- 
ation of vortices was run forward in time both on a 64 x 64 grid and on a 32 x 32 grid. 
The two simulations were run simultaneously and time-stepped together, and the 
spectrum of the difference of Fourier components of vorticity was monitored. Small 
scales are being treated very differently in these two simulations. The result is sum- 
marized in figure 17. For each wavenumber band j < k < j + 1, j = 1, . . . , 17, common 
to both grids, the histograms show the r.m.s. deviation of Fourier components of the 
two grid vorticities, i.e. a scale decomposed measure of the difference between the 
two simulations. The units on the ordinate are arbitrary but the same for all three 
histograms. The arrow above each histogram shows the location of the peak in the 
vorticity spectrum (3.10) of the 64 x 64 grid simulation. As the flow evolves this peak 
moves towards k = 0. Figure 17 demonstrates that  the dominant wavenumber of 
vorticity apparently always manages to cascade back ahead of the receding front of 
the difference spectrum. Since even small relative shifts in the position of vortices 
from one simulation to the other, e.g. slight differences of phase in vortex merging 
events, will show up in the difference spectrum, it is understandable that the general 
height of this spectrum increases. Together with the result shown in figure 17 a 
favourable comparison of real space pictures produced from the two simulations 
seems to rule out the possibility, that errors on small scales are contaminating large 
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FIGURE 17.  Growth of vorticity-difference spectrum for same vortex configuration time-stepped 
on two different grids. The arrows show the location of the peak in the vorticity spectrum, (3.10), 
or equivalently the dominant horizontal scale. 

scale dynamics in any systematic way. This view is commonly held but rarely 
explicitly checked. 

6. Summary and outlook 

The plane shear layer is certainly the simplest of all free turbulent flows. Neverthe- 
less, we believe it to be considerably more complicated than commonly held, even 
with the restriction to purely two-dimensional dynamics. We are convinced that large 
structures exist in the shear layer at  some stage in its evolution, even when started 
from random initial conditions, but we can only speculate whether they persist 
indefinitely. When the large structures are present they introduce at least one new 
length scale, their size, which did not scale with the layer thickness during the course 
of our simulation. However, this violation of scaling did not show up when monitoring 
simple, low order velocity correlations functions. Thus, while the scaling predicted by 
self-preservation theory may be correct, the underlying dimensional arguments have 
become even harder to justify. The two-dimensional shear layer seems to thicken by a 
scattering of vortex structures about the midline and only partly by vortex amalga- 
mation. The process of vortex distruption plays a very minor role if any. One might 
expect this picture to be explicable in terms of the governing conservation laws but 
so far such an explanation has escaped us. We do believe that the basic conserved 
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quantities are energy and L2 (equation (2.1)), and that other inviscidly conserved 
quantities (like enstrophy) must adjust to these two. 

The simple scaling of the shear layer is analogous to the large-scale similarity theory 
of Batchelor (1969) for the isotropic case, although this theory does not apply here due 
to the importance of L2. It is noteworthy that the dimensionless inverse cascade rate 
in this type of scaling, which in our case is r in equation (3.7), is apparently always a 
small number. This is possibly because an inviscid two-dimensional flow is severely 
constrained by many conservation laws, but the size of this parameter is not well 
understood. It is also not clear whether the existence of this small parameter can be 
used as a basis for theoretical calculation. It is important to note that the shear layer 
accomplishes an amazing reduction in the number of effective degrees of freedom as it 
evolves. Although we have not checked this in detail, we certainly expect that an 
array of point vortices, of the appropriate strengths, replacing the large vortex blobs 
would be capable of following the evolution of the shear layer to a high degree of 
approximation. We are presently considering algorithms that would take advantage 
of this feature, and thus would allow one to simulate an ever larger portion of an 
infinite shear layer using a fixed number of variables and equations of motion. 

Although much remains unresolved from a fundamental point of view, the present 
paper has suggested a remarkably simple parametrization of the shear layer: The 
vortex blobs have a profile given by equilibrium statistical mechanics and their dis- 
tribution about the midline can be taken as Gaussian. A result of this kind seems useful 
in applications. 
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Appendix. Derivation of equation (3.15) 
From the definition of 0, equation (3.3), 

8 = - 2 S d y  G$/(AU)2. 

Euler’s equation for the x component of velocity, 

au au au 1 ap 
at ax ay p a x ?  

aE a -  
at ay uv 

-+u-+v- = --- 

where p ,  p are density and pressure, gives 

- = -- 

by statistical homogeneity in x and use of incompressibility. Substituting (A 3) into 
& 
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(A 1), and integrating by parts, we get 

H .  Aref and E .  D. Siggia 

But W vanishes far below and far above the layer, and S goes to a constant, so the 
integrated term vanishes. Furthermore, by homogeneity in x 

thus 

B = 2 dy@E/(AU)2, (A 6) s 
which is (3.15). 
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